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Abstract. The sol–gel transition is studied introducing the bond fluctuation dynamics within
the percolation model in order to investigate both static and dynamic properties. Computer
simulations on a square lattice have shown that the static properties agree with the random
percolation model and the self-diffusion coefficients vanish at the percolation threshold. From
the self-diffusion coefficients the critical behaviour of the viscosity at the sol–gel transition is
determined, giving an exponents = 1.9± 0.1.

1. Introduction

The sol–gel transition is observed in a polymeric solution, the sol, where bond formation
between different molecules is induced; it is characterized by a diverging viscosity and the
appearance of an elastic behaviour. These properties are linked to the constitution inside the
sol of a macroscopic polymeric structure, the gel phase [1, 2]. The viscoelastic behaviour
at the sol–gel transition is expressed in terms of power laws for the viscosityη and the
elastic modulusE [3–5, 7]. Experimental values for the critical exponents are very scattered:
experimental determination for the viscosity critical exponents has given values ranging
from 0.6 to 1.6 and for the elastic modulus critical exponentt values from 1.8 to 3.9 in
three dimensions [6, 7].

Because of the crucial role of connectivity, the percolation model has been successfully
used to describe the transition [8, 9] and has given critical exponents for the mean weight
averaged molecular weight, the mass distribution, the molecules gyration radius, and the gel
fraction [10] which agree with the experimental measurements [14]. Kinetics of aggregation
and dependence on the solvent have also been numerically studied [11–13].

The percolation model, however, gives a purely static description with no prediction on
the viscosity and the elasticity critical behaviours [15]. On the other hand, experimental
results do not allow a simple interpretation for both these quantities, leaving the critical
behaviour of viscosity and elasticity as still an open problem.

In this paper we study the sol–gel transition within a percolation description, introducing
the dynamics via the bond fluctuation model [16]. Since this model can be simply expressed
in a lattice algorithm which allows the use of Monte Carlo techniques, we have carried out
this study via computer simulations on a square lattice.
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We consider the sol–gel transition in the case of strong gelation (e.g. polyfunctional
condensation induced by light irradiation [23, 9]), where bonds are permanent and the
transition exhibits a sharp threshold.

The paper is organized as follows. In section 2 we briefly describe the percolation
dynamic approach based on the bond fluctuation model; in section 3 we present the numerical
simulation; in sections 4 and 5 the results for the percolation properties and the diffusive
behaviour are respectively discussed; conclusions follow in section 6.

2. The percolation dynamic approach

In a problem of strong gelation the process starts in a monomeric sol where permanent
bonds are formed. We consider monomers to interact only via excluded volume interactions
and bonds to form instantaneously, without modifying the monomer positions. The main
parameters are then the monomer concentration and the bond density and the static properties
can be described by random percolation [9].

Introducing an appropriate dynamics for monomers and clusters, dynamic properties
can also be studied. It is then possible to determine the diffusion properties and calculate
the diffusion coefficientsD, which are linked to the viscosityη according to the Einstein’s
relationD ∝ 1/η, near the percolation threshold.

We let the system evolve according to the bond fluctuation model. This is a coarse-
grained model which has been introduced originally to study the dynamics of polymer
chains [16–18]. In this model each fundamental monomeric unit in a molecule can move
randomly, according to the excluded volume interaction constraint. Due to these random
movements the bond lengths between monomers in the same molecule can fluctuate in a
certain set of allowed values, which is determined by the self-avoiding walk condition. This
model is found to reproduce the Rouse dynamics, as required [16, 17].

In the hypercubic lattice version each monomer occupies 2d sites ind-dimensions, i.e.
a lattice unit cell, and because of excluded volume interactions occupied cells cannot have
common sites. Monomer movements are ruled by excluded volume and allowed bond
lengths constraints.

3. The numerical simulation

In the numerical simulations we have considered a square lattice of sizeL = 100; each
monomer occupies simultaneously four sites, which are vertices of a lattice elementary
plaquette and two nearest neighbours (nn) monomers are always separated by an empty
plaquette, i.e. two occupied plaquettes cannot have common sites†. We consider then the
plaquette lattice with double lattice spacing and occupy its sites with probabilitypm. In the
thermodynamic limit thispm coincides with the monomer concentration on the main lattice,
i.e. the ratio between the present number of monomers and the maximum allowed number
of monomers, which for example on a latticeL = 100 is 2500.

We let monomers distribute uniformly on the main lattice via a diffusion process lasting
a fixed time interval (2000 Monte Carlo steps (MCS) per particle). Bonds are at this point
instantaneously created with probabilitypb between two nn monomers, or next nearest

† This model of single monomers is different from the hard square lattice gas model introduced in [19, 20],
where two plaquettes may have common sites: it is possible to see that the formation of blocked structures, which
dramatically slows down the diffusion process in the hard square lattice gas [21, 22], is not allowed in our case.
In fact we verified that the monomer diffusion process has no such slowing down and is arrested only when the
maximum monomer density is reached.
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Figure 1. Possible configurations for a polymer consisting of five monomers: (a) a starting
configuration when bonds of lengthl = 2 or l = 3 are present along lattice directions; (b)–(d)
because of monomer displacements this configuration changes and bond lengths may assume
every allowed value.

neighbours (nnn) along lattice directions (figure 1(a)). Since two monomers cannot be
simultaneously nn and nnn, each monomer can be bonded to at most four other monomers
(d = 2).

For each value of the pair(pm, pb) we determine the cluster size distribution using
the Hoschen–Kopelman algorithm [25]. We calculate the mean cluster size and evaluate
the percolation probabilityR corresponding to a(pm, pb) pair as the average number of
configurations with a spanning cluster. The(pm, pb) pairs which correspond to a percolation
probabilityR = 0.5 can be used to evaluate the curve of the gel onset. We have then fixed
pb = 0.95 and studied the system for differentpm values (which from now on we call
simply p) in the sol phase, at the transition threshold and in the gel phase.

Monomers, free or linked in clusters, diffuse with one lattice spacing displacement along
a direction randomly selected out of the four lattice directions. A monomer can move to
one of the four nn plaquettes which have two sites in common with the one occupied at
the moment. The other two sites of the new plaquette are required to be free, to prevent us
from having two occupied plaquettes with common sites after the displacement.

Let us define the bond length as the Euclidian distance between two bonded monomers.
In the diffusion process, because of the monomer displacements, the bond lengths are
modified. We fix the maximum allowed bond lengthlmax=

√
13 in order to avoid bond cuts

and the minimum allowed bond lengthlmin = 2 because of the excluded volume constraint
[16]. The allowed values for the bond lengthl are thenl = 2,

√
5, 3,
√

8,
√

10,
√

13
(figure 1). A single step in this diffusion process corresponds to an attempt to move each
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single monomer on the lattice. Aftert time steps we calculate the coordinates of the centre
of mass of a cluster of sizes

Rs(t) = 1

s

s∑
i=1

ri (t) (1)

and its mean-square displacement averaged over alls-clusters

1R2
s (t) =

1

Ns

Ns∑
α=1

(Rαs (t)− Rαs (0))2 (2)

where the indexα refers to theαth s-cluster andNs is the number ofs-clusters.
We also calculate the number of nn monomer pairsε(t) and its time autocorrelation

function g(t) defined as

g(t) =
〈
ε(t ′)ε(t ′ + t)− ε(t ′)2

ε(t ′)2− ε(t ′)2
〉

(3)

where the bar indicates the average overt ′ and the brackets indicate the average over the
different initial site and bond configurations.

We have first used free boundary conditions, easily implemented in the algorithm,
and obtained good data for the static properties and the qualitative behaviour of the
autocorrelation functions. In the dynamic study free boundary conditions did not allow
the particles to reach the diffusive regime close to the percolation threshold. We have then
used periodic boundary conditions. Further studies of the autocorrelation functions with
periodic boundary conditions are currently in progress.

4. Percolation properties

At t = 0, when the bonds have been created, after cluster counting we determine the
percolation properties. As bonds are permanent, the cluster size distribution does not change
with time. If s is the cluster size andns is the number ofs-clusters per site, we calculate
the mean cluster size as

χ =
∑
s

s2ns (4)

averaged over different initial site and bond configurations and evaluate the percolation
probabilityR as explained in section 3.

To study these percolation quantities and their critical behaviour we have used finite-
size scaling analysis and data collapse [25]. Therefore we have considered the percolation
probabilityR and the mean cluster sizeχ to depend onL andp according to relations

R[(p − pc), L] = F1[(p − pc)L 1
ν ] (5)

and

χ [(p − pc), L] = Lγ

ν F2[(p − pc)L 1
ν ]. (6)

From Monte Carlo simulations on lattices withL = 100, 120, 140 at the fixed value
pb = 0.95 and varyingp we have determinedpc and the exponentν as the values which
give the best data collapse forR (pc = 0.91± 0.02 andν = 1.33± 0.05) (figure 2(a)).
We have then used these values to study theχ data and we have determined theγ giving
the best data collapse (γ = 2.44± 0.02) (figure 2(b)). These values forγ and ν are in
agreement with the random percolation exponents in two dimensions [25]. All the static
properties are averaged over a number of configurations ranging from 120 to 700 depending
on system size.
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Figure 2. Data collapse for percolation probabilityR (a) for different cluster sizes (L =
100, 120, 140). The best collapse is obtained withpc = 0.91± 0.02 andν = 1.33± 0.05. For
the same lattice sizes, data collapse of the mean cluster sizeχ (b); the best collapse is obtained
with pc = 0.91± 0.02, ν = 1.33± 0.05, γ = 2.44± 0.02.
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Figure 3. Mean-square displacement of the centre of mass as function of time forpb = 0.95.
The curves in each figure refer to cluster sizes = 1, 2, 3, 4 (from top to bottom) and (a) 40
configurations atp = 0.7, (b) 10 configurations atp = 0.9.
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Figure 4. 〈1R2
s (t)〉/4t as function of time forpb = 0.95 in a log–log plot for cluster size

s = 1; from top to bottomp = 0.4, 0.78, 0.86, 0.89, and the broken lines correspond to the
〈1R2

s (t)〉/4t asymptotic value, i.e. the self-diffusion coefficients. The data are averaged over
all s-clusters and a number of configurations ranging from 100 to 3 depending onp.

5. Diffusion properties

We have studied monomer diffusion on the latticeL = 100 with periodic boundary
conditions. For each cluster sizes, the centre of mass motion can be expressed, according
to the theory of Brownian motion and the Rouse model [24], in terms of the self-diffusion
coefficientDs defined as

Ds = lim
t→∞

1

4t
〈1R2

s (t)〉 (7)

where the brackets as usual indicate the average over the different initial site and bond
configurations.

The〈1R2
s (t)〉 data for different cluster sizes as a function ofp are shown in figure 3: we

first observe for each value ofp a decreasing self-diffusion coefficient with increasing cluster
size. Big clusters are, in fact, supposed to move less easily in any monomer concentration
condition.

If we now fix the cluster size and consider an increasing monomer concentration, we
observe a decreasing self-diffusion coefficient as well for all cluster sizes. We could imagine
a diffusing s-cluster as a molecule moving in the viscous fluid formed by the solvent and
all the other molecules, therefore an increasing monomer concentration means an increasing
intrinsic viscosity.



1908 E Del Gado et al

Figure 5. Time autocorrelation functiong(t) as function of time. The different curves refer
to (from bottom to top)p = 0.1, 0.4, 0.7, 0.8, 0.82, 0.85, 0.86 and 10 configurations; for each
curve g(0) = 1. The decay to zero becomes slower asp increases towards the percolation
thresholdpc = 0.91.

In order to calculateDs , we are interested in the long time diffusive behaviour, thus we
have studied over several decades of time the quantity

1

4t
〈1R2

s (t)〉. (8)

When this quantity attains a constant value we can say that the asymptotic diffusive regime
has been reached and equation (8) provides the value of the self-diffusion coefficientDs .
The time needed to reach this diffusive behaviour increases with the monomer concentration
p: in figure 4 we can see how forp = 0.4 andp = 0.78 the asymptotic regime is already
reached att ' 105 MCS whereas a much longer observation time is needed forp = 0.86
andp = 0.89.

The autocorrelation functions defined in equation (3) have been calculated for different
p values and are shown in figure 5. In order to take the average overt ′ the entire observation
time for each value ofp is of the order of 106 MCS/p. We observe that forp far enough
from the percolation threshold the autocorrelation functions readily decay to zero, whereas
their decay becomes slower asp increases up to the percolation threshold.

The self-diffusion coefficientsDs as function ofp are presented in figure 6 for different
cluster sizess: for each cluster sizeDs decreases and goes to zero at a value numerically
indistinguishable from the percolation threshold.

We have focused on data for thes = 1-clusters and calculated the critical behaviour for
D1. Assuming the Einstein relationD−1

1 ' η we can then determine the viscosity critical
behaviour at the sol–gel transition. From the log–log plot (figure 7) we find that

η ∝ (p − pc)−s (9)
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Figure 6. Self-diffusion coefficientsDs for pb = 0.95 for different cluster sizess = 1, 2, 3, 4
as function ofp.

Figure 7. Log–log plot for self-diffusion coefficientD1 critical behaviour for cluster sizes = 1;
the linear fit determines the critical exponents ' 1.9± 0.1.
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with s ' 1.9± 0.1. This evaluation of the viscosity critical exponent apparently does not
agree with the exponent of conductivity in the random superconducting networks ' 1.3
[27], which is the value suggested by the de Gennes’ analogy between this problem and
gelation [26, 2].

6. Conclusions

We have studied the sol–gel transition introducing within the percolation model the bond
fluctuation dynamics, which allows the description of bond conformational changes in
polymers by means of fluctuating bond lengths. This model is aimed at studying the dynamic
behaviour corresponding to the static transition. For strong gelation we have first identified
the gelation transition and then studied the diffusion properties in the sol and calculated the
self-diffusion coefficients. Our results show that the self-diffusion coefficients vanish at the
percolation threshold with an exponents ' 1.9± 0.1. The behaviour of the autocorrelation
functions indicates that the relaxation times become longer and longer as the percolation
threshold is approached.

We are extending the study to the cased = 3 in order to allow the comparison with
experimental data and to analyse the elasticity critical behaviour [15, 24].
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